购物车

0
剖析:为什么日本工业机器人产业发展得这么好?
驼驮网
2020-09-15

近年来机器人产业在全球范围内迅速崛起,目前已经形成了欧洲、美国、日本、中国、韩国等五大机器人集中发展区,今天我们来说一说日本的工业机器人。


剖析:为什么日本工业机器人产业发展得这么好?

 

在工业机器人领域,单从企业来看,abb、发那科(fanuc)、库卡(kuka)和安川电机(YASKAWA)这四大家族的霸主地位无可撼动,依旧是全球主要的工业机器人供货商,占据全球约50%的市场份额。

 

其中发那科(FANUC)的市场份额占比最高,占比达到17.3%,安川电机的占比也达到了12.9%。除了以上这两位“大哥”,日本还有三菱、欧姆龙、OTC、电装、爱普生、川崎、那智等机器人企业同样实力不俗。就目前的情况来看,日本的工业机器人占据全世界超过50%的市场份额。


日本机器人产业为何能发展得这么好?

 

机器人能灵活运转主要仰赖两大支柱——电机和人工智能,而日本这两方面都发展得不错。

 

先来看日本的电机制造。

 

行走、运动是机器人最大的特点。比如,本田汽车公司生产的机器人“阿西莫”(ASHIMO)靠双腿行走,村田制作所的“村田顽童”能在一条5厘米宽的轨道上骑车,在平地上更能各处闯荡。

 

让机器人动起来,除了提供必要的电力等能源外,最主要的还在于驱动装置,也就是电机。

 

做“草蛇”机器人的日立,刚开始其实就是生产电机起家的。1910年,日立公司的创始人生产出了具有5匹马力的电机,也正是因为成功生产出了这台电机,才有了办企业的信心。

 

日立的各种展览会上,必定会把这台现在看起来很笨重的电机拿出来,告诉来看展览的人,自己是一家电机企业。当然,今天的日立,生产的电机各式各样,不仅有能作为发电站引擎的中大型电机,也有小型的微型产品。而有了丰富的电机产品,生产起机器人来,驱动装置就有了保证。

 

除了日立外,日本生产机器人的企业很多都有较强的电机研发及制造能力。比如,安川电机本来就是电机的专业厂家。早在1977年,安川电机公司就研制出了日本第一台全电动的工业用机器人——“莫托曼”1号。目前日本机器人企业的情况是,日立、安川电机、发那科等形成了一个矩阵,几乎能提供工业生产上的所有自动化(机器人)设备。而这些企业的共同之处在于,他们都具有超乎其他国家企业的电机生产能力。没有强大的电机制造能力,想在机器人方面占领先机,会有较大困难。


文章来源:机器人说


更多精彩内容推荐阅读:


>>节卡机器人首次提出S³产品概念,将携多款新品亮相2020上海工博会!


>>工业上机器换人带来的失业问题如何看待?美国曾经这样做!中国走在路上!


>>第四代移动机器人:灵动科技V-AMR全球首发暨招商




相关文章推荐
RV减速器和谐波减速器两者有什么区别
RV减速器和谐波减速器两者有什么区别
导读:作为工业机器人核心零部件的精密减速器,与通用减速器相比,机器人用减速器要求具有传动链短、体积小、功率大、质量轻和易于控制等特点。据了解,目前大量应用在关节型机器人上的减速器主要有两类:即RV减速器和谐波减速器1. RV减速器和谐波减速器的原理RV减速器:用于转矩大的机器人腿部腰部和肘部三个关节,负载大的工业机器人,一二三轴都是用RV。相比谐波减速机,RV减速机的关键在于加工工艺和装配工艺。RV减速机具有更高的疲劳强度、刚度和寿命,不像谐波传动那样随着使用时间增长,运动精度会显著降低,其缺点是重量重,外形尺寸较大。▲RV-E型减速器谐波减速器:用于负载小的工业机器人或大型机器人末端几个轴,谐波减速器是谐波传动装置的一种,谐波传动装置包括谐波加速器和谐波减速器。谐波减速器主要包括:刚轮、柔轮、轴承和波发生器三者,四者缺一不可。其中,刚轮的齿数略大于柔轮的齿数。谐波减速机用于小型机器人特点是体积小、重量轻、承载能力大、运动精度高,单级传动比大。▲谐波减速器两者都是少齿差啮合,不同的是谐波里的一种关键齿轮是柔性的,它需要反复的高速变形,所以它比较脆弱,承载力和寿命都有限。RV通常是用摆线针轮,谐波以前都是用渐开线齿形,现在有部分厂家使用了双圆弧齿形,这种齿形比渐开线先进很多。减速器的两巨头是Nabtesco和Hamonica Drive,他们几乎垄断了全球的机器人用减速器。这两种减速器都是微米级的加工精度,光这一条在量产阶段可靠性高就很难了,更别说几千转的高速运转,而且还要高寿命。谐波减速器由“柔轮、波发生器、刚轮、轴承”这四个基本部件构成。柔轮的外径略小于刚轮的内径,通常柔轮比刚轮少2个齿。波发生器的椭圆型形状决定了柔轮和刚轮的齿接触点分布在介于椭圆中心的两个对立面。波发生器转动的过程中,柔轮和刚轮齿接触部分开始啮合。波发生器每正时针旋转180°,柔轮就相当于刚轮逆时针旋转1个齿数差。在180°对称的两处,全部齿数的30%以上同时啮合,这也造就了其高转矩传送。相比谐波减速器,RV传动是新兴起的一种传动,它是在传统针摆行星传动的基础上发展出来的,不仅克服了一般针摆传动的缺点,还具有体积小、重量轻、传动比范围大、寿命长、精度保持稳定、效率高、传动平稳等一系列优点。RV减速器是由摆线针轮和行星支架组成,以其体积小、抗冲击力强、扭矩大、定位精度高、振动小、减速比大等诸多优点被广泛应用于工业机器人、机床、医疗检测设备、卫星接收系统等领域。RV减速器的壳体和摆线针轮是通过实体的钢来发生传动的,因此承载能力强。而谐波减速器的柔轮可不断发生变形来传递扭矩,这一点决定了谐波减速器承受大扭矩和冲击载荷的能力有限,因此一般运用在前端。2.RV减速器和谐波减速器两者的优劣势谐波减速器结构简单紧凑,适合于小型化、低、中载荷的应用。RV减速器刚性好、抗冲击能力强、传动平稳、精度高,适合中、重载荷的应用,但RV减速器需要传递很大的扭矩,承受很大的过载冲击,保证预期的工作寿命,因而在设计上使用了相对复杂的过定位结构,制造工艺和成本控制难度较大。RV减速器内部没有弹性形变的受力元件,所以能够承受一定扭矩。RV减速器的轴承是其薄弱环节,受力时很容易突破轴承受力极限而导致轴承异常磨损或破裂。在高速运转时这个问题更突出,所以RV减速机的额定扭矩随输入转速下降非常明显。3. 减速器之间是否存在取代关系正方观点:RV减速器较机器人中常用的谐波传动具有高得多的疲劳强度、刚度和寿命,而且回差精度稳定,不像谐波传动那样随着使用时间增长运动精度就会显著降低。所以许多国家的高精度机器人传动多采用RV减速器,因此,RV减速器在先进机器人传动中有逐渐取代谐波减速器的发展趋势。这些产品在某些型号上确实存在替代关系,但这几类减速器只能实现部分替代。绝大部分情况下,各类减速器很难实现替换,比如在速比方面,谐波和RV的速比都要远远大于行星,所以小速比领域是行星的天下。当然行星的速比是可以做大的,但是很难去替换谐波和RV。又比如刚性方面,行星和RV的刚性要好于谐波,在体现刚性的使用工况下,谐波很难有好的表现。谐波减速器的特点是轻和小,在这方面,行星和RV却很难做到。所以各类减速器只能在一部分情况下可实现替换,但是如果一种产品全方位替换另一种产品是不现实的。反方观点:各类减速器之间不能相互取代,而是一种互补的关系。RV和谐波这两种传动有互补性,但也不排除结构设计优化和制造工艺突破后,在中低载荷应用领域形成局部竞争。文章来源:网络
网络
2020-10-22
快讯|第十三届国际水中机器人大赛在青岛圆满收官
快讯|第十三届国际水中机器人大赛在青岛圆满收官
1.第十三届国际水中机器人大赛在青岛圆满收官9月23日,第十三届国际水中机器人大赛在青岛圆满收官,太原理工大学机器人团队在为期一天半的比赛中,获得两项一等奖、两项二等奖、三项三等奖,派出的七只队伍全部获奖。9月22日,作为2020(第五届)青岛国际海洋科技展览会的重头戏之一,第十三届国际水中机器人大赛在青岛拉开帷幕。作为目前国内首个也是唯一一个由中国高校发起创立的高端学科竞赛,国际水中机器人大赛以认识海洋、经略海洋,推动我国海洋强国建设为赛事发生背景,设立竞赛项目,展开竞赛活动。大赛的目标是通过竞赛加速新一代智慧海洋工程与装备技术的原始创新和产业化应用步伐。大赛以“海洋机器人”为核心竞赛内容,促进人工智能、机器人等最新信息工程技术在海洋科学、海洋工程与技术两个一级学科上的发展普及和应用,具有鲜明的学科特色和技术特色。2.亚马逊推出新的 Ring 产品,包括迷你家庭监控无人机据外媒报道,在今天的年度硬件盛会中,亚马逊宣布了一系列适用于家庭和汽车的各种形状和尺寸的新 Ring 品牌设备。它推出了 Ring Car Cam,这是一种新的行车记录仪,该公司称可用于 99%的车辆。Ring Always Home Cam,一个微型无人驾驶飞机,可飞过房间监视所有发生的事情;还有一个邮箱传感器,可以在邮件到达时向用户发出警报。3.计算机视觉公司「诠视科技」数千万A轮融资,深创投领投「诠视科技」近期获得数千万元A轮融资,由深创投领投、清科跟投。诠视科技是一家致力于AR/VR领域感知交互核心技术研发和产品实施的企业。此次A轮融资之后,诠视科技将继续拓展VSLAM底层技术在业界主流芯片平台上的系统集成。4.高德地图上线iPhone版AR驾车导航高德地图近日发布v10.65新版,上线iPhone版AR驾车导航。据官方介绍,高德AR导航已支持iPhone 8 Plus及以上苹果机型与部分高端安卓手机。在更新高德地图至最新版后,用户只需一部手机和一个横屏支架,即可体验AR实景导航。5.Alexa 将很快获得听起来更自然的语音,并会识别多人讲话的时间据外媒报道,今天首次举行的 9 月年度硬件活动期间,亚马逊宣布了其 Alexa 开发人员工具和框架产品组合的更新。这些功能与 Alexa 的一系列新功能同时出现,其中包括 Reading Sidekick,该功能使 Alexa 可以与孩子们一起读书。同时宣布的还有用于儿童的 Alexa 语音配置文件,它可以自动识别儿童的语音并切换到儿童友好模式,并改进了 Alexa 的会话和家庭监视功能。6.AI企业服务提供商「循环智能」获得1200万美元融资9月24日消息,面向销售场景的AI企业服务提供商「循环智能」获得1200万美元融资,由红杉资本中国基金领投,万物资本、金沙江创投跟投。循环智能CEO陈麒聪表示,本轮融资将主要用于加大研发投入和业务推广。7.Facebook 推出 Dynabench 使 AI 模型更强大Facebook 今天推出了Dynabench,这是一个用于 AI 数据收集和基准测试的平台,它使用人类和模型「循环」创建具有挑战性的测试数据集。Dynabench 利用一种称为动态对抗性数据收集的技术,与当前的基准相比,该模型可以更好地指示模型的质量。素材来源:机器之心、cnBeta、腾讯新闻、网易科技、36氪
驼驮网
2020-09-25
CNC老师傅总结的宝贵经验,教你怎么处理加工中出现的问题!
CNC老师傅总结的宝贵经验,教你怎么处理加工中出现的问题!
导语:CNC加工的过程中总会出现这样那样的问题,很多问题不是从业十年以上的老师傅根本不知道怎么处理,今天驼驮小编跟大家分享一些CNC老师傅总结的加工经验,都是干货哦!一、工具过切 原因:1、弹刀,刀具强度不够太长或太小,导致刀具弹刀;2、操作员操作不当;3、切削余量不均匀。(如:曲面侧面留0.5,底面留0.15);4、切削参数不当(如:公差太大、SF设置太快等)。改善:1、用刀原则:能大不小、能短不长;2、添加清角程序,余量尽量留均匀,(侧面与底面余量留一致);3、合理调整切削参数,余量大拐角处修圆;4、利用机床SF功能,操作员微调速度使机床切削达到最佳效果。二、分中问题 原因:1、操作员手动操作时不准确;2、模具周边有毛刺;3、分中棒有磁;4、模具四边不垂直。改善:1、手动操作要反复进行仔细检查,分中尽量在同一点同一高度;2、模具周边用油石或锉刀去毛刺在用碎布擦干净,最后用手确认;3、对模具分中前将分中棒先退磁,(可用陶瓷分中棒或其它);4、校表检查模具四边是否垂直,(垂直度误差大需与钳工检讨方案)。三、对刀问题 原因:1、操作员手动操作时不准确;2、刀具装夹有误;3、飞刀上刀片有误(飞刀本身有一定的误差);4、R刀与平底刀及飞刀之间有误差。改善:1、手动操作要反复进行仔细检查,对刀尽量在同一点;2、刀具装夹时用风枪吹干净或碎布擦干净;3、飞刀上刀片要测刀杆、光底面时可用一个刀片;4、单独出一条对刀程序、可避免R刀平刀飞刀之间的误差。四、撞机-编程 原因:1、安全高度不够或没设(快速进给G00时刀或夹头撞在工件上);2、程序单上的刀具和实际程序刀具写错;3、程序单上的刀具长度(刃长)和实际加工的深度写错;4、程序单上深度Z轴取数和实际Z轴取数写错; 5、编程时座标设置错误。改善:1、对工件的高度进行准确的测量也确保安全高度在工件之上;2、程序单上的刀具和实际程序刀具要一致(尽量用自动出程序单或用图片出程序单); 3、对实际在工件上加工的深度进行测量,在程序单上写清楚刀具的长度及刃长(一般刀具夹长高出工件2-3MM、刀刃长避空为0.5-1.0MM);4、在工件上实际Z轴取数,在程序单上写清楚。(此操作一般为手动操作写好要反复检查)。五、撞机-操作员原因:1、深度Z轴对刀错误·;2、分中碰数及操数错误(如:单边取数没有进刀半径等);3、用错刀(如:D4刀用D10刀来加工);4、程序走错(如:A7.NC走A9.NC了);5、手动操作时手轮摇错了方向;6、手动快速进给时按错方向(如:-X 按 +X)。改善:1、深度Z轴对刀一定要注意对刀在什么位置上。(底面、顶面、分析面等)。2、分中碰数及操数完成后要反复的检查。3、装夹刀具时要反复和程序单及程序对照检查后在装上。4、程序要一条一条的按顺序走。5、在用手动操作时,操作员自己要加强机床的操作熟练度。6、在手动快速移动时,可先将Z轴升高到工件上面在移动。六、曲面精度 原因:1、切削参数不合理,工件曲面表面粗糙·;2、刀具刃口不锋利;3、刀具装夹太长,刀刃避空太长;4、排屑,吹气,冲油不好;5、编程走刀方式,(可以尽量考虑走顺铣);6、工件有毛刺。改善:1、切削参数,公差,余量,转速进给设置要合理;2、刀具要求操作员不定期检查,不定期更换;3、装夹刀具时要求操作员尽量要夹短,刀刃避空不要太长;4、对于平刀,R刀,圆鼻刀的下切,转速进给设置要合理;5、工件有毛刺:与我们的机床,刀具,走刀方式有直接关系,所以我们需要了解机床的性能,对有毛刺的边进行补刀。更多精彩内容推荐阅读:>>学数控必备!CNC加工中心操机全过程>>CNC加工应该选择顺铣还是逆铣?>>【干货】CNC模具加工工艺标准,还不快来收藏!
驼驮网整理
2020-09-24
工业互联网平台驼驮科技宣布完成数千万元A轮融资
工业互联网平台驼驮科技宣布完成数千万元A轮融资
日前,工业互联网平台拓斯达旗下驼驮科技宣布完成2500万元人民币A轮融资,投资方为敢当观海基金,投后估值达1亿美金。 驼驮科技成立于2019年4月,是一个定位于智能制造设备领域的产业互联网平台,给设备生产商和设备使用方提供基于生产设备的售后综合服务,通过产业数据的沉淀和应用,对产业资源进行合作和高效匹配,助力工业企业更加轻量化转型升级。驼驮科技的核心创始团队分别来自拓斯达、阿里巴巴、阿里云等公司,拥有制造业和互联网双重基因,通过互联网思维与工业制造行业经验深度融合,赋能工业制造企业数字化应用,推动产业转型升级。2018年拓斯达创始人吴丰礼升级了拓斯达的使命,从让工业回归自然之美升级到让工业制造更美好,同时提出硬件平台和服务平台双平台战略和赋能100万家制造业实现自动化和赋能100万工程师服务自动化的愿景。其中拓斯达将会承载硬件平台的建设,在底层技术、控制器、伺服系统、视觉等方面打通,以注塑机、CNC、机器人等硬件产品领域助力制造企业;驼驮科技将会承载服务平台的建设,整合社会化资源为平台上的设备使用企业、设备制造企业和维修工程师、维修服务商等提供相应的工具、产品和服务,助力整个行业提效降本; 创始人吴丰礼表示,本轮融资将用于进一步市场拓展和产品研发,驼驮科技将继续以设备维保为核心切入场景,为工业设备提供全生命周期的多维服务,获得产业数据沉淀并最终反哺产业向前发展。 在业务布局方面,目前驼驮科技以工业设备售后维保为核心业务场景,采用互联网+售后服务的模式,推出工业售后服务平台“驼驮维保”,通过和全国维保技术团队/工程师通力合作与管理软件服务,采用系统精准匹配维保需求服务,快速解决售后问题,为制造企业提供效率更高、成本更低的设备售后维保平台服务。 自2020年4月上线运营至今,驼驮维保平台做到3分钟极速响应需求,当前已入驻服务商达7200多人,实现全国范围除香港、澳门以外的省市覆盖,尤其是珠三角、长三角等重点工业区域实现市级全覆盖。服务商服务能力涵盖口罩机、熔喷机、注塑机、机器人、自动化、CNC等设备行业,截止目前已经有7900多家工业企业通过驼驮平台发布过售后维保需求;驼驮维保针对售后工程师特点,定制研发符合售后业务的App,有效的提升了工程师售后业务管理和接单能力,经过多次运营活动,提高了行业部分工程师的服务效率和水平,也保障了工业企业的生产效能。 同时,针对工业设备全生命周期服务,驼驮科技在设备交易流转、设备使用管理以及售后管理等不同服务节点上已推出驼驮电商及SaaS软件服务,助力设备使用方更好地管理和使用生产设备,同时让设备厂商优化营销及售后服务场景,促使双方交易成本有效降低,整体效益提升。最终驼驮维保、驼驮电商和“驼驮+”SaaS会形成驼驮科技的业务铁三角,形成工业设备全生命周期的数据链条打通。 
驼驮网
2020-09-23
为什么齿轮不能少于17个齿数,少了会怎样?
为什么齿轮不能少于17个齿数,少了会怎样?
齿轮是生活中应用比较广泛的一种零配件,不管是航空、货轮、汽车等等都会使用。不过齿轮在设计加工的时候它的齿轮数量是有要求的,有人说如果低于了17齿就不能转了,有人反驳说不对,低于17齿以下的齿轮比比皆是,大家的说法都正确,知道这是为什么吗?那为什么是17?而不是其他数哪?至于17,这个要从齿轮的加工方法说起,如下图,一种广泛使用的方法是用一个滚刀去切。这样制造齿轮时,当齿数较少时,会发生根切现象,这会影响制造出来的齿轮的强度。什么是根切,就是根被切了。注意图中红框部分:齿轮的齿顶与啮合线的交点超过被切齿轮的极限啮合点时,被切齿轮齿根的渐开线齿廓被切去一部分,这种现象叫根切。那么什么情况下可以避免根切呢?答案就是这个17(齿顶高系数1,压力角20度时)。首先,齿轮能够转动就是因为上齿轮和下齿轮之间要形成一对良好的传动关系,只有两者之间的衔接到位了,所以它的运行才能是一个平稳的关系。拿渐开齿轮来说,两个齿轮之间啮合好才能发挥它的作用,具体又分成了直齿圆柱齿轮和斜齿的圆柱齿轮这两种。标准的直齿轮它的齿顶高的系数是一,齿跟高的系数是1.25,而它的压力角的度数要达到20度,齿轮加工时如果齿胚和刀具之间就像是两个齿轮一样。如果胚的齿数小于一个特定值的时候齿根的根部就会被挖去一部分,就叫做根切,如果根切小了之后就会影响到齿轮的强度和平稳性。这里所说的17个是针对齿轮来说的,如果不谈齿轮的工作效率的话不管多少个齿它都会工作,也能运行。此外,17它是一个质数,也就是说齿轮的某个齿和其他的齿轮的某个重合次数在一定圈数下最少,受力时就不会长期在这一个点上。齿轮属于精密仪器,虽然在每个齿轮上都会产生误差,但是17这个产生轮轴磨损的几率实在是太大了,所以如果是17的话,短期动一会还行,长期的话就不能了。但是,问题来了!市面上还有很多小于小于17个齿的齿轮,照样转的好好的,有图有真相!有网友指出,事实上,如果换一种加工方法,制造齿数小于17的标准渐开线齿轮是可以的。当然,这样的齿轮用起来也是很容易卡住的(由于齿轮干涉,找不到图,请脑补),这样也就真的转不动了 。对应的解决方法也很多,变位齿轮是最常用的一种(通俗的说就是切的时候把刀具挪开一点),另外也可以有斜齿轮,摆线齿轮等等。还有就是泛摆线齿轮。另一位网友观点:大家似乎还是太过相信书了,不知道有多少人在工作中对齿轮彻彻底底研究过的,机械原理一课中对于渐开线直齿齿轮齿数大于17不产生根切的推导是基于加工齿轮的齿条刀具的前刀面顶部圆角R为0,而实际上工业生产中的刀具怎么会没有R角呢?(没有R角刀具热处理是尖锐部分应力集中容易崩裂,使用过程中容易磨损或者崩裂)而且就算是刀具没有R角根切发生的最大齿数也未必是17齿,所以17齿作为根切条件的说法其实是有待商榷的!上几幅图大家看看吧。从图中可以看出当用前刀面顶部R角为0的刀具加工齿轮时从15齿到18齿的齿根过渡曲线并没有什么明显变化,那为什么说17齿是渐开线直齿开始发生根切的齿数呢?这张图想必机械工程专业的同学应该都用齿轮范成仪画过,可以看出刀具R角大小对齿轮根切的影响。上图中的齿根部分的紫色延伸外摆线的等距曲线就是齿根根切后的齿廓线,一个齿轮的齿根部分根切到什么地步就会影响使用呢?这是由另外一个齿轮齿顶的相对运动和齿轮齿根的强度储备共同决定的,如果配对齿轮的齿顶不会和根切部分啮合那这两个齿轮就可以正常旋转,(注:根切部分是非渐开线齿廓,一个渐开线齿廓和一个非渐开线齿廓啮合在非特异设计的场合通常是无法共轭的,也就是要干涉的)。从这张图上可以看出这两个齿轮的啮合线刚刚擦着两齿轮的过渡曲线所对的最大直径圆(注:紫色部分为渐开线齿廓,黄色部分为根切部分,啮合线是不可能进入基圆以下的,因为基圆以下是不可能有渐开线的,两齿轮在任意位置的啮合点皆在这条线上),也就是这两齿轮刚刚可以正常啮合,当然这在工程上是不允许的,啮合线长度为142.2,此值/基节=重合度。还有人说:首先这个题设错误,齿轮小于17个齿不会影响使用(答案第一中这一点的描述出现错误,齿轮正确啮合的三个条件中与齿数无关),但是17个齿在某些特定情况下会出现加工不便的情况,这里更多的是补充一些关于齿轮的相关知识。先说渐开线,渐开线是使用最广泛的齿轮齿廓的类型。那么为什么是渐开线?这个线跟直线、圆弧有什么区别?如下图所示为一渐开线(这里只有半个齿的渐开线)。渐开线用一句话说就是假定一直线和其上一不动点,在该直线沿一个圆滚动时,那个不动点所走过的轨迹。它的好处显而易见,当两个渐开线互相啮合时,如下图。两轮转动时 ,在接触点 (如 M , M’ )上力的作用方向恒在同一直线上上 ,而且这根直线与两个渐开线形的接触面 (切面)保持垂直 ,由于垂直,它们之间不会产生“打滑”和“摩擦”,这也就客观上减小了齿轮啮合的摩擦力,不仅能提高效率,还能延长齿轮的寿命。当然,作为应用最多的一种齿廓形式——渐开线,并不是我们唯一的选择。再说“根切”,作为工程师,我们不仅仅要考虑理论层面可不可行,效果好不好,更为关键的在于要想办法让理论上的东西呈现出来,这涉及到选材、制造、精度、检测等等环节。齿轮常用的加工方式一般分为成形法和范成法,成形法也就是通过制造与齿之间的间隙形状相对应的刀具,直接切出齿形,这个一般有铣刀、蝶形砂轮等;范成法比较复杂,大家可以理解为两个齿轮在啮合,其中一个齿轮很硬(刀具),另一个则还处于毛胚状态,啮合的的过程是由离得很远逐渐运动到正常啮合状态,在这个过程中切削产生新齿轮,有兴趣的可以找《机械原理》具体学习。范成法的使用很广泛,但是当齿轮齿数较少时,就会出现刀具的齿顶线与啮合线的交点,超过被切齿轮的啮合极限点的情况,这时待加工齿轮的根部就会被过切除,由于被根切的部分超过了啮合极限点,它并不影响齿轮的正常啮合,但这样的坏处在于它削弱了轮齿的强度,这样的齿轮用在变速箱等重载场合时,就容易出现轮齿折断的情况,如图为2模8齿齿轮正常加工后的模型(有根切)。而17是在我国齿轮标准的情况下计算出的极限齿数,齿数小于17的齿轮在使用范成法正常加工时就会出现“根切现象”,这时便要调整加工方法,如变位,如图为变位加工的2模8齿齿轮(小根切)。当然这里描述的内容很多内容是不全面的,机械中还有很多更有意思的零件,在工程中制造这些零件面临的问题也更多,有兴趣的金粉不妨多关注关注。结论:17个齿来自于加工方式,也取决于加工方式,如果更换或者改进齿轮的加工方式如成形法、变位加工(这里特指直齿圆柱齿轮),就不会出现根切现象,也就没有17个齿的极限数量问题。另外从这个问题及其答案可以看出机械学科的一个特点——理论与实践高度结合。机械液压论坛观点:首先,齿轮少于17个齿就不能转的说法是不正确的,下面我们简单介绍一下17个齿这个数字是怎么来的。齿轮是指轮缘上有齿轮连续啮合传递运动和动力的机械元件,齿轮齿廓有渐开线形,圆弧形等,渐开线形齿轮应用比较广泛。渐开线齿轮又分直齿圆柱齿轮/斜齿圆柱齿轮等,对于标准的直齿圆柱齿轮,齿顶高系数为1,齿根高系数为1.25,压力角为20°。齿轮加工时一般采用范成法加工,即加工时刀具与齿坯的运动就像一对互相啮合的齿轮。对于标准齿轮加工,如果齿数小于某一特定值,在齿坯的根部的渐开线轮廓就会被挖去一部分,这就叫根切,如下左图,根切会严重影响齿轮的强度和传动的平稳性,这个不发生根切的最小值是 2*1/sin(20)^2(1就是齿顶高系数,20就是压力角 )。这里的17个齿是针对标准直齿圆柱齿轮而言的,我们有很多办法来,避免发生根切,比如齿轮变位,即将刀具远离或靠近轮坯回转中心,这里为了避免发生根切需要选择远离轮廓回转中心,如下右图,是不是完整的渐开线轮廓线又出来了。齿轮变位之后,齿轮就又可以不受影响的转起来了,上面通过适当的变位,5个齿的齿轮也可以转了。其实斜齿轮也可以避免避免齿轮根切,或者降低发生根切的最小齿数值。17这个数字是计算出来的。并不是说少许17个齿轮就转不起来,而是如果少于17个齿,容易在齿轮加工时将齿轮根部以加工出的间开线部分切去一部分,即根切,造成齿轮强度减弱。至于怎么计算的,完全是数学问题,参照上面的公式,捏合角a=20度是,最小不发生根切的最小齿数是17个。网友观点:齿轮的齿数能不能少于17是一个值得考虑的问题。对于标准齿轮来说,齿数还真不能少于17,为什么呢。因为当齿数少于17时,齿轮会发生根切现象。所谓根切是指用范成法切齿时,在一定的条件下,刀具的齿顶过多地切入轮齿的根部,而将齿根的渐开线齿廓切去一部分。范成法范成法(或称展成法)是运用几何学上的包络原理加工齿轮的一种方法。在给定了两齿轮的渐开线齿廓和主动轮角速度w1后,通过两齿廓的啮合就可获得从动轮的角速度w2,且使i12=w1/w2=定值。因为两齿廓啮合中,两节圆作纯滚动,节圆1在节圆2上纯滚的过程中,齿轮1的齿廓对于齿轮2将占据一系列相对位置,而这一系列相对位置的包络线就是齿轮2的齿廓,也即在两节圆作纯滚动时,两渐开线齿廓可看作互为包络线。根切现象产生根切的原因:当刀具齿顶线与啮合线的交点超过啮合极限点N1,刀具由位置Ⅱ继续移动时,便将根部已切制出的渐开线齿廓再切去一部分。根切的后果:产生严重根切的齿轮,一方面削弱了轮齿的抗弯强度;另一方面将使齿轮传动的合度有所降低,这对传动是十分不利的。产生根切的原因:当刀具齿顶线与啮合线的交点超过啮合极限点N1,刀具由位置Ⅱ继续移动时,便将根部已切制出的渐开线齿廓再切去一部分。对于非标准齿轮,齿数少于17是可以的。来源:知乎
驼驮网整理
2020-09-22
机器人常用的几种齿轮链
机器人常用的几种齿轮链
齿轮链是由两个或两个以上的齿轮组成的传动机构。它不但可以传递运动角位移和角速度, 而且可以传递力和力矩。现以具有两个齿轮的齿轮链为例, 说明其传动转换关系。其中一个齿轮装在输入轴上, 另一个齿轮装在输出轴上, 如图1所示。 图 1 齿轮链机构使用齿轮链机构应注意两个问题:一、齿轮链的引入会改变系统的等效转动惯量, 从而使驱动电机的响应时间减小, 这样伺服系统就更加容易控制。输出轴转动惯量转换到驱动电机上, 等效转动惯量的下降与输入输出齿轮齿数的平方成正比。二、在引入齿轮链的同时, 由于齿轮间隙误差, 将会导致机器人手臂的定位误差增加; 而且, 假如不采取一些补救措施, 齿隙误差还会引起伺服系统的不稳定性。通常, 齿轮链转动有以下几种类型, 如图2所示。其中圆柱齿轮的传动效率约为90%, 因为结构简单, 传动效率高,圆柱齿轮在机器人设计中最常见;斜齿轮传动效率约为80%, 斜齿轮可以改变输出轴方向;锥齿轮传动效率约为70%, 锥齿轮可以使输入轴与输出轴不在同一个平面, 传动效率低;蜗轮蜗杆传动效率约为70%,蜗轮蜗杆机构的传动比大, 传动平稳, 可实现自锁, 但传动效率低, 制造成本高, 需要润滑;行星轮系传动效率约为80%,传动比大, 但结构复杂。 图 2常用的齿轮链(a) 圆柱齿轮;(b) 斜齿轮; (c) 锥齿轮; (d) 蜗轮蜗杆;(e) 行星轮系来源:网络
驼驮网整理
2020-09-21
恭喜您,询价成功!
我们会尽快联系您!
关闭