65种常见注塑工艺 缺陷及解决方法手册(四)

网络
2020-05-12

在本注塑工艺汇总的专题下,想要回顾前文的,可直接点击以下链接查看:

65种常见注塑工艺 缺陷及解决方法手册(一)

65种常见注塑工艺 缺陷及解决方法手册(二)

65种常见注塑工艺 缺陷及解决方法手册(三)


65种常见注塑工艺



(四十八)拉丝


(1)何谓拉丝(外观)


拉丝是指主流道前端没有断开而伸展成丝状的一种现象。最大的问题是有时会发生成形品因拉丝而无法脱落,最大的问题是有时会发生成形品因拉丝而无法脱落,被模具夹住,从而导致无法连续成形。


树脂的纺丝性(在熔融状态下拉伸时可伸长成丝状的性质)越好,拉丝就越严重。因此与改性材料相比,非强化的材料更易引起拉丝。


(2)拉丝的生成原因


(2-1)主流道前端尚未固化


注射后,经过冷却工序,主流道会与产品一起固化,但由于其前端与机筒喷嘴相接,从而保持着一定的温度,因此有时芯部并未完全固化。如果此时打开模具,纺丝性(拉伸时会伸展成丝状且不会断开)好的材料便容易在主流道前端产生拉丝。


从成型条件来说,如果树脂温度(特别是喷嘴温度)或模具温度偏高,则容易引起拉丝。


(2-2)材料和等级固有的问题


大家知道,液晶聚合物以及使用过某种弹性体的耐冲击性等级比其它材料更容易引起拉丝。这是因为这些材料的纺丝性很好。此外,就同一种材料而言,粘度越低就越容易拉丝。




(四十九)须状斑纹


(1)何谓须状斑纹(外观)


须状斑纹是指在Duracon中常见的、浇口附近的小流痕。


斑纹本身很薄,难以拍摄,如右图所示。


(2)须状斑纹的生成原因


(2-1)流动样式的变化


从浇口出来的树脂通常是按左边的样式来填充的,而当按右边的样式流动时便会产生“须状斑纹”。就成型条件而言,在下列情况下容易产生须状斑纹:


(1)模具温度偏低


(2)注射速度偏快


(3)浇口尺寸偏小


(4)材料流动性偏低


(3)须状斑纹的对策


(3-1)改善浇口处的流动状况


具体来说,可采取下列对策:


(1)提高模具温度


(2)降低注射速度(通过浇口时)


(3)扩大浇口


(4)改用流动性好的等级


要降低通过浇口时的速度,请最好采用多级注射。





(五十)压花不均匀


(1)何谓压花不均匀?


压花不均匀是指模具上的压花图案未能干净利落地复制在成型品上。


(2)压花不均匀的生成原因


(2-1)保压力不足


压花不均匀是由于将树脂粘着在模腔时所需的保压力不足而引起的。保压力降低的条件如下:


(1)机筒温度偏低(包括喷嘴)


(2)模具温度偏低


(3)浇口偏小


(4)分流道偏细


(5)保压力设定值偏低


(6)注射速度偏低


(7)材料流动性偏低


(2-2)因喷射纹、光泽不好、凹痕等其它成型不良引起的压花不均匀喷射纹等其它成型不良也会引起压花不均匀。


(3)压花不均匀的对策


(3-1)提高保压力


首先尝试提高保压力。如果这样无法解决问题,则即使成型机输出上升,也可认为保压力没有有效地传递到模腔。此时应进行如下调整:


  • 提高机筒温度(包括喷嘴)

  • 提高模具温度

  • 加快注射速度


如果这样仍不见效或效果不佳,则需要更改模具或材料





(五十一)模垢(MD)对策


模垢(MD)一旦形成便很难去除


因此必须在牢固附着前就进行维护


下面给出的是延长维护周期的一些对策


(1)强化预干燥


最好达到100~120℃、3小时的基本标准。但如果干燥温度偏高,则会使DuraconDS-01M、EB-7以及EB-10趋于恶化。(最好达到60℃×18小时的条件)其机制现在尚不清楚。应予以注意。


(2)降低机筒温度


应尽可能降低,下限通常为180℃。


(3)减少树脂的滞留时间


为了尽可能防止材料的热分解,建议使用较小的成型机并使机筒温度带有梯度。


(4)提高模具温度


注射树脂时,气体状的MD主要成分也会被同时注射到模具内。这种成分接触到模具并急速冷却后便会凝固并附着在模具上,从而形成MD。由此可见,提高模具温度将有助于防止急速冷却并增加附矀的难度


(5)尽量降低注射速度


为了防止树脂在浇口等流道较窄处因剪切而发热,同时也为了使排气能够顺利进行,注射速度还是慢一点为好。


这一措施会带来令人出人意料的效果。


(6)尽可能加大浇口直径


对点浇口和隧道浇口特别有效,与上述⑤一起使用时效果会更加显着。


(7)定期用清模剂来清理排气口


如上所述,MD积得很厚时将难以清理,但如果只是排气口的清理,则比较容易进行。MD附着的第一步就是从排气口的堵塞开始的。建议在早上开工前和午休后进行清理。




(五十二)浇口残留


(1)何谓浇口残留(外观)


是指浇口残留在成型品表面上的一种现象。


点浇口或隧道浇口在开模时会自动断开,但如果浇口的形状和大小不合适,则不能彻底断开


(2)浇口残留的生成原因


(2-1)浇口固化不足


如果浇口固化不足,则开模时本该断开的部位以外的部分也变脆,因此浇口也会在该处断开,从而导致浇口的前端部分残留在产品侧。


(2-2)浇口形状


采用点浇口的情况下,如果浇口前端部分的锥角偏缓,则有时在前端部分无法彻底切断。此外浇口前端的直径大小也会产生影响:一般来说,直径越大就越容易产生浇口残留。


隧道浇口的情况也一样。在隧道浇口的情况下,甚至进入角度也会产生影响。角度偏小则容易产生浇口残留;反之,过大则会产生浇口切割不良。这是因为在隧道浇口中,浇口前端孔的大小会随其角度的变化而变化(基本上是椭圆形)。


(2-3)等级固有的问题


耐冲击性等级或合金材料比标准等级更容易产生浇口残留。其原因通常包括1)掺入这些材料的不同树脂固化偏慢;2)由于在浇口附近承受很大的剪切力,因此所添加的不同树脂被拉伸成层状


(3)浇口残留的对策


(3-1)促进浇口固化


使浇口充分固化以减少浇口残留。具体方法如下:


  • 降低模具温度

  • 留足冷却时间




(五十三)浇口切割不良


(1)何谓浇口切割不良


是指采用点浇口等成型时,连接成形品、主流道、分流道的浇口不易被切断的一种现象。若选用点浇口或潜伏浇口,在开模的同时,连接产品,主流道、分流道的浇口会自动断裂。但如果浇口的形状或大小不合适,则会产生浇口切割不良,并残留在模具内部


(2)浇口切割不良的生成原因


(2-1)力方面的平衡不良


为了保证浇口处将产品部分与分流道部分切断,保持“浇口强度”、“分流道的保持力”以及“产品的保持力”等3个力的平衡是非常重要的。打开模具时,如果分流道部分留在固定侧,而产品部分留在可动侧,两者就会在浇口处被切断。如果浇口的强度太大,或产品部分与分流道的保持力偏弱,则会产生浇口切割不良


一般来说,分流道是通过锁定销来保持的;其保持力取决于锁定销的形状和大小以及开模时分流道部分的温度。如果锁定销的大小或斜度不足,浇口就会在尚未被切断的时候脱落,因此与其增大浇口强度,倒不如增强分流道的保持力。相反,分流道的保持力过大则会使分流道无法脱离模具。并且树脂的强度和刚性也会随着温度的变化而变化,因此也必须根据这一点进行调整。


产品部分是靠侧面斜度的摩擦力,或滑芯来保持的。在依靠斜度摩擦力保持的情况下,仍须达到浇口强度以上。此时也会受到温度的影响。


此外浇口强度当然会受浇口设计的影响。如果浇口尺寸偏大,强度就会增大,从而使浇口不易被切断。若是2块模板,且采用的是隧道浇口,则还会受到浇口角度及设置位置的影响。若是3块模板,且采用的是点浇口,则还会受到2次主流道的斜度、研磨等的影响。


(1)模具温度


受冷却后的树脂温度的影响。如果树脂温度发生变化,则强度和刚性也会随之变化。


(2)保压压力与保压时间


受树脂填充量、产品、主流道和分流道的尺寸的影响。其尺寸对侧面的斜度摩擦保持情况有很大影响。尺寸过大时甚至会出现无法脱模的情况。


(3)注射速度


受树脂填充量、产品、主流道和分流道的尺寸的影响。


(2-2)等级固有的问题


就耐冲击性等级或合金材料等而言,添加了弹性体的树脂,其固化速度偏慢且材料的弹性模量降低,因此比其它材料更易出现浇口切割不良。由此可见,在模具设计阶段就需要充分研究相关对策


(3)浇口切割不良的对策


(3-1)改变强度平衡


根据浇口切割不良的状况对成型条件进行如下调整


★分流道留在可动侧时


可认为是由于固定侧的分流道锁定销偏弱,或浇口部分的强度偏大。因此可采取增大分流道锁定销的保持强度,或减弱浇口强度的对策。修正模具以改变两者的大小也是一个方法。如果要更改成形条件,则降低模具温度,促进分流道锁定销周围的固化和提高强度的方法也可能有效。如果是隧道浇口,也可以考虑修正浇口部分。


★分流道留在固定侧时


可认为是由于产品部分的侧面斜度偏弱,或浇口部分的强度偏大。对策之一,修改模具以强化斜度或减小浇口。另一种方法则是提高保压,增大分流道尺寸以提高保持力


★在3块式模具中产品和分流道留在中板上时


浇口太强的可能性很大,因此应将浇口尺寸稍微改小,或反过来强化分流道锁定销。就成形条件而言,减小保压也可能有效。




(五十四)主流道粘模


(1)何谓主流道粘模(外观)


主流道残留是指成型品的主流道未能脱离模具的一种现象。


如果长时间施加保压以致主流道尺寸增大,或模具的主流道部分有伤,则会产生阻力,从而使主流道在开模时不能脱落。


(2)主流道粘模的生成原因


(2-1)主流道固化不充分


主流道尚未完全固化时,由于此刻的收缩量很小,主流道紧贴模具,强度也偏低,因此如果此时就要使主流道退出,则会非常容易折断。这样一来,主流道就残留下来了。树脂温度、模具温度以及周期(冷却时间)等对主流道固化都有影响。


(2-2)过度施加保压


主流道部分离机筒喷嘴最近,因此便于施加保压。因此,施加高保压后,主流道的尺寸便会增大,而且脱模时的阻力也会相应地增大,从而容易发生主流道粘模。


(2-3)模具构造方面的问题


主流道部分的斜度偏小时,固定侧脱模的阻力会增大。虽然为了从固定侧拔出主流道而设置了主流道锁定,但如果很脆弱,锁定就会受损,从而使主流道从移动侧脱落。另外,如果使用的是分流道锁定,由于它过于牢固,主流道和分流道有时会粘附到固定侧。


(2-4)等级固有的问题


与标准等级相比,耐冲击性等级或合金材料的收缩更小,更容易粘附到模具上,而且强度也更低。这样一来,主流道粘模就更容易发生了。


(3)主流道粘模的对策


(3-1)使主流道充分冷却并固化后再开模


降低模具温度并延长冷却时间。特别是对于强度小而固化慢的材料,降低模具温度将是一种有效方法。


(3-2)降低保压


降低保压也是有效的。施加在产品模腔上的保压会在浇口封闭后变为0,因此,如果此后不施加保压,则主流道就不会承受无用的保压。但过度降低则容易导致注射量不稳定,因此需要注意。


(3-3)改善模具


主流道斜度所必需的角度尚未有专门的规定。但如果可能出现主流道粘模,则增大角度也是有效的。强化主流道锁定(加大尺寸并增强斜度)也是有效的。相反,由于有可能因顶出而变得难以脱落,因此需要在实际成型的同时进行调整。


分流道锁定过于牢固时,请将该部分的尺寸略微改小。




(五十五)表面剥离


(1)何谓表面剥离(外观)?


顾名思义,表面剥离是指成型品表层发生剥落的一种现象。


注射成形品的构造通常分为表层(称为皮层)和内层(称为芯层)。这是因为熔化了的树脂通过喷流进入模腔内,在表层固化的同时,内部还在流动。这两层界面因某种原因而发生剥落的现象便是界面剥离。


(2)表面剥离的生成原因


(2-1)剪切力偏大


剥离是因树脂流动时的剪切力过大而产生的。剪切力变大的条件如下。特别是在厚度小且压力高的情况下容易产生这种成型不良。


(1)机筒温度偏低(包括喷嘴)


(2)模具温度偏低


(3)浇口偏小(通过浇口时剪切力变大)


(4)产品厚度偏薄


(5)保压压力过高


(6)注射速度过快


此外还应注意流动距离、充填时间是否过长。如果充填时间长,则浇口附近的固化层和流动层的温差就会增大,从而容易产生剥离。


(2-2)混入不同材料


不同种类的树脂混入时也会产生剥离。塑料中具有相溶性(完全混合)的组合非常少,不同树脂可相溶的事例几乎没有。在成型过程这些树脂被拉长变薄,在成形品内部呈层状并分散开来,从而容易发生表层剥离。


与一般的等级相比,含油的滑动等级和合金材料更容易产生表层剥离。


(2-3)大量气体混入表层


含有大量气体时也会产生剥离。这是因为滞留在表层下面的气体会集聚成很薄的气体层。容易产生气体的条件如下:


(1)机筒温度过高(树脂已经分解)


(2)干燥不足(含有大量水分)


(3)螺杆转速过快(空气卷入)


(4)背压过低(空气卷入)


(5)保压压力过高


(6)注射速度过快


(7)使用了回收材料


(3)表面剥离的对策


(3-1)降低剪切力


有各种方法,但首先从容易改变的条件着手:


  • 提高机筒温度(包括喷嘴)

  • 提高模具温度

  • 减慢注射速度

  • 降低保压


此时,如果原因在于气体,则提高机筒温度有时反而会使情况恶化。就机筒温度而言,一般应遵守相应的树脂的推荐使用温度。


其次应检查浇口和产品厚度。如果剥离发生在浇口附近,则原因可能是浇口过小。如果产品厚度过薄,剪切力偏高,则应考虑使用流动性好的等级。另外,就浇口而言,侧浇口比点浇口或隧道浇口更可取,可能的话改变浇口设计也是一种方法。此外采用多点浇口也很有效果。


(3-2)抑制气体


为使成型品不含无用气体,应检查下列几点或实施相应的对策:


  • 检查机筒温度是否在推荐的温度范围内

  • 增强干燥温度

  • 降低过高的螺杆转速

  • 充分施加背压

  • 缩短成型周期

  • 降低回料的使用比率




(五十六)喷射纹


1、何谓喷射纹?(外观)


通常,溶融的树脂是以喷流的形式来流动的。不过,当从狭窄处流到宽阔处时,如果流速偏快,有时就会呈带状飞出,并且在不接触模具的情况下流动。这被称为喷射纹。根据喷射纹在成品表面的表现方式,有的呈带状,有的则呈雾状,但它们的原因都是一样的。


2、喷射纹的生成原因


(2-1)浇口尺寸偏小


发生喷射纹的最大原因是浇口尺寸。如果想象一下水枪,则不难理解喷射纹这一现象。孔(浇口)越小,飞出去的力量就越足,喷射纹也会因此而变得越发严重。之所以说孔小是因为它意味着该处的压力增高,且速度加快。


(2-2)注射速度偏快


在浇口直径相同的情况下,注射速度越快,喷射纹就越严重。


(2-3)粘度偏高/流动性偏低


在浇口直径和注射速度相同的情况下,树脂的粘度越高(流动性越低),喷射纹就越严重。


影响粘度增高的条件如下:


(1)树脂温度偏低


(2)模具温度偏低


(3)材料粘度


(2-4)保压偏低


保压在一定程度上会使喷射纹变得太不明显。相反,如果未充分施加保压,喷射纹就会很明显。


3、喷射纹的对策


(3-1)尝试增大浇口尺寸


首先检查能否更改浇口尺寸。虽然这取决于产品的形状和大小,但有余地的话,通过更改浇口尺寸是可以消除喷射纹的。最好采用短而宽的浇口流道(gateland);呈扇状打开并带有角度的设计样式也很有效。


(3-2)尝试更改浇口位置


接着检查能否更改浇口位置。喷射纹基本上是由于树脂飞出去的力量很大而产生的。而且飞出去的目标空间越开阔就越严重。但如果从浇口飞出去的树脂很快碰壁的话,喷射纹即可消除。


即使在无法更改浇口位置的情况下,如果能够在产品模腔内的浇口正面另外设置针或壁之类的东西,则有望获得同样的效果。


(3-3)尝试降低注射温度


尝试降低注射速度设定。对策是采用多段注射并且只减慢通过浇口时的速度(而非整体降低)。


◆各种材料的推荐注射条件


树脂注射压力注射速度V-P切换位置


Duraconmax8~19mm/sec制品填充量的9成左右


Duranex〃16~33mm/sec〃


Fortron〃25~42mm/sec〃


Vectra〃30~50mm/sec〃


(3-4)降低树脂粘度


降低树脂粘度的方法:


(1)提高树脂温度


(2)提高模具温度


(3)将等级改为高流动型


(3-5)检查保压


◆各种材料推荐的保压条件


树脂保压力保压时间


Duracon59~98MPa浇口密封+1~2sec


Duranex59~98MPa〃


Fortron39~69MPa〃


Vectra29~49MPa〃




(五十七)流涎


1.何谓流涎(外观)


指树脂从成型机喷嘴漏出的一种现象。


一般的注射成型机的喷嘴前端的树脂并没有完全固化,当机筒内压偏高,或树脂粘度偏低时,已熔化的树脂就会漏出。


树脂粘度偏低或成型机机筒的内压偏高时就会出现流涎。


2.流涎的生成原因


(2-1)树脂粘度偏低


大部分注射成型机都采用开式喷嘴,并通过条件调节来防止外流。但是,如果分子量因分解而降低,或把机筒的设定温度设得很高,树脂就会因粘度降低而流出。


(2-2)机筒内压偏高


对机筒内的树脂施加一定压力的原因有2点:一个是气体的膨胀,另一个是计量时的背压。


气体膨胀的原因是树脂的分解气体和粒料中的水分。它们气化并膨胀后,无处可去的压力就会流向喷嘴的前端,从而形成流涎。


另一方面,就背压而言,由于计量时需要用它来防止空气卷入,因此必须施加一定程度的背压。但如果施加过度,树脂就会被压缩成紧缩状态,从而导致内压升高和流涎。


另外,空气也会因加热而膨胀起来,因此如果计量时卷入了大量空气,流涎就会越发严重。


3.流涎的对策


(3-1)提高树脂粘度


把机筒温度、特别是喷嘴温度设得略低一些。设得过低则会影响流动性并产生冷料(混入熔化不足的树脂)等,进而造成外观不良,因此建议使用推荐温度范围内的最低限。此外,把材料等级改为粘度更高的材料也是一种有效方法。


(3-2)降低内压


首先降低螺杆转速和背压。但如果背压为0,则容易卷入气体,并有可能造成其它成型不良,所以最低也要施加约0.2Mpa的背压。螺杆转速应设在100rpm左右。


从防止气体混入的意义上来说,可采取下列有效措施:(1)加强干燥,(2)不要把机筒温度升得太高。此外,增大抽塑量也有效。抽塑可使螺杆后退,从而在整体上减少树脂。这样便可在前部形成间隙,从而赢得流涎发生前的时间。


(3-3)更改喷嘴形状


出于规格的简便性以及成本方面的考虑,一般的成型机都采用开式喷嘴,对于流涎确实很严重的材料,使用闭式喷嘴也是一种解决方法。此外,喷嘴的孔径越小,则越难以形成流涎。许多成型机生产商都备有不同孔径和形状的喷嘴。价位大多在10万日元以下,值得购买。不过,由于材料的流动性偏低,因此前提是成型条件要有一定程度的余地




(五十八)注射量不稳定


1.何谓注射量不稳定


是指每模所得成型品之间存在偏差。


成型品在尺寸、外观、重量等方面的不稳定是由成型条件的差异所引起的。


(1)注射压力


(2)模具温度


(3)计量


(4)排气


上述成型条件的不稳定是其主要原因。


2.注射量不稳定的生成原因


(2-1)压力不足


一般的注射成型工序为注射→保压→冷却(计量)。注射~保压阶段应该是通过加压来压入已融化树脂的过程。该压力偏低时被压入的树脂量就容易变得不稳定。产生这种压力不足的原因多种多样,具体如下:


  • 树脂温度偏低

  • 模具温度偏低

  • 注射速度偏慢

  • 保压偏低

  • 保压时间偏短

  • VP切换位置过早

  • 主流道、分流道、浇口等的信道部分偏细,从而导致压力传递不畅

  • 树脂流动性差,因此压力损失大。

  • 厚度中有特别厚的部分。


(2-2)模具温控不稳定


模具温控不稳定时特别容易伴生尺寸的偏心或偏差等。根据模具的具体情况,有时也难以对塑孔栓等进行局部温度调整,从而使偏差加剧。


(2-3)计量不稳定


若计量不稳定,注射的树脂量也就不稳定。这样一来,各次注射之间出现偏差的可能性也就增大了。详情请参阅计量不良部分。


(2-4)排气不良


排气口偏弱、排气不畅时,填充量有时会变得不稳定。


3.注射量不稳定的对策


(3-1)充分施加保压


由于某种(即便是局部性的)原因,实际的保压力存在不稳定的可能性。因此应采取下列对策。由于平均尺寸会因此而偏大,因此就工序管理而言,有必要设定不同的标准。


★成型条件


提高树脂温度

提高保压力

提高模具温度

延长保压时间

加快注射速度

延迟VP切换位置


★模具


扩大主流道、分流道、浇口等

尽可能使壁厚均一化。厚度标准为2-4


★材料


改用流动性好的材料


(3-2)检查模温机


水温控制时,请检查存在问题的部位附近的温控信道是否畅通。特别是塑孔栓等处的温度很容易升高,因此应尽可能对其进行温度控制。如果是电加热器,则请检查加热器的位置。


(3-3)使计量保持稳定


请参阅此处的计量不良对策并予以实施。


(3-4)改善排气状况


偶尔也有排气口排气不畅、尺寸不稳定的情况。此时需要降低注射速度,或强化排气口以使排气通畅。




(五十九)波纹


1.何为波纹(外观)?


波纹是指成型品表面出现皱纹状痕迹。通常发生在注射速度慢、表层固化快于树脂填充的场合。


2.波纹的生成原因


(2-1)注射速度过慢


注射速度偏慢时将无法形成喷流,表层呈凹凸状,从而出现“波纹”。另外还有一个次要原因:如在产品偏厚而浇口偏小的情况下,实际的填充速度会变慢,从而容易形成波纹。


(2-2)模具温度偏低


模具温度偏低时,表层固化会加快,而喷流难度则会加大,从而容易产生波纹。


3.波纹的对策


(3-1)加快注射速度


这是一种最有效的方法。它可通过提高注射速度来基本消除波纹。但如果成型口偏厚而浇口偏小,实际的填充速度就会变慢,因此这一点也要注意。


(3-2)减慢表面固化


具体来说就是要提高模具温度。这样一来,喷流会在一定程度上变得更加容易,同时也不易产生波纹。




(六十)计量不良


1.计量不良:是指无法向机筒内供给树脂,或供给量不稳定的一种现象。这种现象统称为计量不良,但实际上有几种模式:


根本不计量


计量时间有时会延长


有时会出现填充不足


这些都会造成计量不良,也就是计量时提供给机筒内的树脂不稳定。


2.计量不良的生成原因


(1)螺杆转速不当


通常,螺杆转速越高,粒料的输送力就越强。因此,如果螺杆转速偏慢,粒料的输送力就会减弱,从而导致粒料供给不稳定并产生计量不良。相反,如果转速过快,粒料就会与螺杆一起运动,同样也不能前进。


(2)背压偏高


背压具有抑制其体局侵入书之内和稳定注射树脂量的作用,但同时也有减弱输送力的效果。因此,如果背压过高,计量就会变得不稳定。


(3)机筒设定温度不当


机筒设定温度会对机筒内的粒料温度产生影响。也就是说,由子桓料的表状态及刚性发生变化,因此对计量也有影响。特别是料斗下方及其相邻的设定温度会对计量带来很大影响。


一般来说,从喷嘴到料斗下方的温度设定由高到低,且料斗下方的设定温度低,计量便会保持稳定。这是因为温度升高后,粒料表面就会熔化,粒料之间的摩擦增大,从而导致互相交织缠绕,或粘着在螺杆或机筒上。


(4)等级固有的问题


在滑动等级中,由于与金属制件的滑动过于良好,因此螺杆旋转力不能很好的转换成向前的输送力,从而容易造成计量不良。


如果要用螺杆来输送粒料这样的颗粒,则应在外侧的几桶上面使粒料难以滑动,而在内侧的螺杆面上使粒料易于滑动。正是由于这种摩擦上的差异,旋转力才变成了把粒料向前输送的力。


(5)使用了回收材料


回收材料通常形状很不规整,因此与普通粒料相比,粒料之间的摩擦容易增大,从而容易引起计量不良。


3.计量不良的对策


(3-1)调整螺杆转速


首先应调整螺杆转速。若想定期观察有无计量不良现象,应测量计量时间。通过50-100次连续成型,并分若干阶段改变转速,根据计量事件是否突然变长等情况来做出判断。螺杆转速一般为80-120RPM左右,请根据具体情况,选择最佳范围。


(3-2)降低背压


背压越低,理疗的输送力就越强,计量也就越稳定。但降的过低会使气体的卷入增多并导致树脂量不稳定,因此设为0并不可取。


(3-3)机筒温度


具体来说就是要一点一点逐渐降低料斗下方的温度。过度降低会使粒料不易融化,甚至会堵塞机筒,因此要逐渐调整。(每次10℃左右)


(3-4)等级固有的问题


由于掺入了油或润滑剂,因此华东等级原本就具有容易滑动的性质。如果同时调整螺杆转速、背压和机筒温度也难以解决问题时,则应考虑更改等级或螺杆设计。


(3-5)回收材料


尽可能将回收粒料和初始粒料搞成同样的大小。同时尽可能去除粉末。




(六十一)划痕


65种常见注塑工艺

65种常见注塑工艺




(六十二)凹痕


65种常见注塑工艺




(六十三)收缩


65种常见注塑工艺




(六十四)注射不足


65种常见注塑工艺




(六十五)短周期成型


65种常见注塑工艺

65种常见注塑工艺

65种常见注塑工艺

相关文章推荐
划重点!注塑成型过程及操作要点来啦!
划重点!注塑成型过程及操作要点来啦!
为了方便大家能够更加了解注塑成型过程,更容易地操作注塑机,下面驼驮小编现将注塑机的工作顺序和成型方法以及操作方法介绍给大家,具体细节部分需要根据制品的成型条件进行设定,希望能对大家的工作有所帮助。1.注塑机的动作程序:射台前进→注射→保压→预塑→倒缩→射台松退→冷却→开模→顶出→退针→开门→关门→合模→射台前进。2.注塑机操作项目:注塑机操作项目包括控制键盘操作、电器控制柜操作和液压系统操作三个方面。分别进行注射过程动作、加料动作、注射压力、注射速度、顶出型式的选择,料筒各段温度及电流、电压的监控,注射压力和背压压力的调节等。3.注射过程动作选择:一般注塑机既可手动操作,也可以半自动和全自动操作。手动操作是在一个生产周期中,每一个动作都是由操作者拨动操作开关而实现的。一般在试机调模时才选用;半自动操作时机器可以自动完成一个工作周期的动作,但每一个生产周期完毕后操作者必须拉开安全门,取下工件,再关上安全门,机器方可以继续下一个周期的生产;全自动操作时注塑机在完成一个工作周期的动作后,可自动进入下一个工作周期。在正常的连续工作过程中无须停机进行控制和调整。但须注意,如需要全自动工作,则(1)中途不要打开安全门,否则全自动操作中断;(2)要及时加料;(3)若选用电眼感应,应注意不要遮闭了电眼。实际上,在全自动操作中通常也是需要中途临时停机的,如给机器模具喷射脱模剂等。正常生产时,一般选用半自动或全自动操作。操作开始时,应根据生产需要选择操作方式(手动、半自动或全自动),并相应拨动手动、半自动或全自动开关。半自动及全自动的工作程序已由线路本身确定好,操作人员只需在电柜面上更改速度和压力的大小、时间的长短、顶针的次数等等,不会因操作者调错键钮而使工作程序出现混乱。当一个周期中各个动作未调整妥当之前,应先选择手动操作,确认每个动作正常之后,再选择半自动或全自动操作。4.预塑动作选择:根据预塑加料前后注座是否后退,即喷嘴是否离开模具,注塑机一般设有三种选择。(1)固定加料:预塑前和预塑后喷嘴都始终贴进模具,注座也不移动。(2)前加料:喷嘴顶着模具进行预塑加料,预塑完毕,注座后退,喷嘴离开模具。选择这种方式的目的是:预塑时利用模具注射孔抵助喷嘴,避免熔料在背压较高时从喷嘴流出,预塑后可以避免喷嘴和模具长时间接触而产生热量传递,影响它们各自温度的相对稳定。(3)后加料:注射完成后,注座后退,喷嘴离开模具然后预塑,预塑完再注座前进。该动作适用于加工成型温度特别窄的塑料,由于喷嘴与模具接触时间短,避免了热量的流失,也避免了熔料在喷嘴孔内的凝固。注射结束、冷却计时器计时完毕后,预塑动作开始。螺杆旋转将塑料熔融并挤送到螺杆头前面。由于螺杆前端的止退环所起的单向阀的作用,熔融塑料积存在机筒的前端,将螺杆向后迫退。当螺杆退到预定的位置时(此位置由行程开关确定,控制螺杆后退的距离,实现定量加料),预塑停止,螺杆停止转动。紧接着是倒缩动作,倒缩即螺杆作微量的轴向后退,此动作可使聚集在喷嘴处的熔料的压力得以解除,克服由于机筒内外压力的不平衡而引起的“留涎”现象。若不需要倒缩,则应把倒缩停止开关调到适当位置,让预塑停止开关被压上的同一时刻,倒缩停止开关也被压上。当螺杆作倒缩动作后退到压上停止开关时,倒缩停止。接着注座开始后退。当注座后退至压上停止开关时,注座停止后退。若采用固定加料方式,则应注意调整好行程开关的位置。一般生产多采用固定加料方式以节省注座进退操作时间,加快生产周期。5.注射压力选择:注塑机的注射压力由调压阀进行调节,在调定压力的情况下,通过高压和低压油路的通断,控制前后期注射压力的高低。普通中型以上的注塑机设置有三种压力选择,即高压、低压和先高压后低压。高压注射是由注射油缸通入高压压力油来实现。由于压力高,塑料从一开始就在高压、高速状态下进入模腔。高压注射时塑料入模迅速,注射油缸压力表读数上升很快。低压注射是由注射油缸通入低压压力油来实现的,注射过程压力表读数上升缓慢,塑料在低压、低速下进入模腔。先高压后低压是根据塑料种类和模具的实际要求从时间上来控制通入油缸的压力油的压力高低来实现的。为了满足不同塑料要求有不同的注射压力,也可以采用更换不同直径的螺杆或柱塞的方法,这样既满足了注射压力,又充分发挥了机器的生产能力。在大型注塑机中往往具有多段注射压力和多级注射速度控制功能,这样更能保证制品的质量和精度。6.注射速度的选择:一般注塑机控制板上都有快速—慢速旋钮用来满足注射速度的要求。在液压系统中设有一个大流量油泵和一个小流量泵同时运行供油。当油路接通大流量时,注塑机实现快速开合模、快速注射等,当液压油路只提供小流量时,注塑机各种动作就缓慢进行。7.顶出形式的选择:注塑机顶出形式有机械顶出和液压顶出二种,有的还配有气动顶出系统,顶出次数设有单次和多次二种。顶出动作可以是手动,也可以是自动。顶出动作是由开模停止限位开关来启动的。操作者可根据需要,通过调节控制柜上的顶出时间按钮来达到。顶出的速度和压力亦可通过控制柜面上的开关来控制,顶针运动的前后距离由行程开关确定。8.温度控制:以测温热电偶为测温元件,配以电脑温度控制板成为控温装置,控制料筒和模具电热圈电流的通断,有选择地固定料筒各段温度和模具温度。料筒电热圈一般分为二段、三段或四段控制。电器柜上的电流表分别显示各段电热圈电流的大小。电流表的读数是比较固定的,如果在运行中发现电流表读数比较长时间的偏低,则可能电热圈发生了故障,或导线接触不良,或电热丝氧化变细,或某个电热圈烧毁,这些都将使电路并联的电阻阻值增大而使电流下降。在电流表有一定读数时也可以简单地用塑料条逐个在电热圈外壁上抹划,看料条熔融与否来判断某个电热圈是否通电或烧毁。如果机台无加热动作,加热故障根据发生频率可能出现在:固态继电器(或交流接触器)损坏无电流输入,感温线损坏无加热信号输出,加热圈损坏,温控板损坏,主机板损坏.9.合模控制:合模是以巨大的机械推力将模具合紧,以抵挡注塑过程熔融塑料的高压注射及填充模具而令模具发生的巨大张开力。关妥安全门,各行程开关均给出信号,合模动作立即开始。首先是动模板以慢速启动,前进一小短距离以后,原来压住慢速开关的控制杆压块脱离,活动板转以快速向前推进。在前进至靠近合模终点时,控制杆的另一端压杆又压上慢速开关,此时活动板又转以慢速且以低压前进。在低压合模过程中,如果模具之间没有任何障碍,则可以顺利合拢至压上高压开关,转高压是为了伸直机铰从而完成合模动作。这段距离极短,一般只有0.3~1.0mm,刚转高压旋即就触及合模终止限位开关,这时动作停止,合模过程结束。注塑机的合模结构有全液压式和机械连杆式。不管是那一种结构形式,最后都是由连杆完全伸直来实施合模力的。连杆的伸直过程是活动板和尾板撑开的过程,也是四根拉杆受力被拉伸的过程。合模力的大小,可以从合紧模的瞬间油压表升起之最高值得知,合模力大则油压表的最高值便高,反之则低。较小型的注塑机是不带合模油压表的,这时要根据连杆的伸直情况来判断模具是否真的合紧。如果某台注塑机合模时连杆很轻松地伸直,或“差一点点”未能伸直,或几副连杆中有一副未完全伸直,注塑时就会出现胀模,制件就会出现飞边或其它毛病。10.开模控制:当熔融塑料注射入模腔内及至冷却完成后,随着便是开模动作,取出制品。开模过程也分三个阶段。第一阶段慢速开模,防止制件在模腔内撕裂。第二阶段快速开模,以缩短开模时间。第三阶段慢速开模,以减低开模惯性造成的冲击及振动。
网络(驼驮整理)
2020-10-15
关于气辅注射成型,你了解多少?
关于气辅注射成型,你了解多少?
气辅注射成型GRIM( Gas-Assisted Injection Mold-ing)为一种新型的注射成型工艺,近几年已在国外得到广泛的应用,国内的使用也越来越多。其原理是利用压力相对低的惰性气体(氮气因为价廉安全又兼具冷却剂的作用而被常用,压力为0.5一300 MPa)代替传统模塑过程中型腔内的部分树脂来保压,以达到制品成型性能更加优良的目的。  一、气辅注射成型的优点气辅注射成型克服了传统注射成型和发泡成型的局限性,具有以下优点:1、制件性能良好(1)消除气孔和凹陷在制件不同壁厚连接处所设的加强筋和凸台中合理开设气道,欠料注射后气体导入,补偿了因熔体在冷却过程中的收缩,避免气孔和凹陷的产生。(2)减少内应力和翘曲变形在制件冷却过程中,从气体喷嘴到料流末端形成连续气体通道,无压力损失,各处气压一致,因而降低了残余应力,防止制件翘曲变形。(3)增加制件的强度制件上中空的加强筋和凸台的设计,使强度重量比比同类实心制件高出大约5,制件的惯性矩工大幅度提高,从而提高制件使用强度。(4)提高设计的灵活性气辅注射可用来成型壁厚不均的制品,使原来必须分为几个部分单独成型的制品实现一次成型,便于制件的装配。例如国外一家公司原来生产的以几十个金属零件为主体、形状复杂的汽车门板,通过GAIM技术并采用塑料合金材料实现了一次成型。  2、成本低(1)节约原材料气辅注射成型在制品较厚部位形成空腔,可减少成品重量达10%一50%(2)降低设备费用气辅注射较普通注射成型需要较小的注射压力和锁模力(可节省25%一50%),同时节约能量达30%(3)相对缩短成型周期由于去除了较厚部位芯料,缩短冷却时间可达50%正是基于这些优点,气辅注射适用于成型大型平板状制品如桌面、门、板等;大型柜体如家用电器壳体、电视机壳、办公机械壳体等;结构部件如底座、汽车仪表板、保险杠、汽车大前灯罩等汽车内外饰件。  二、成型材料的选择理论上讲,所有能用于常规注射成型方法的热塑性塑料均适用于气辅注射成型,包括一些填充树脂和增强塑料。一些流动性非常好,难以填充的塑料如热塑性聚氨酯成型时会有一定困难;粘度高的树脂所需气体压力高,技术上也有难度;玻璃纤维增强材料对设备有一定的磨损。在气辅成型过程中,由于制件的成型壁厚和表面缺陷在很大程度上由原料性能决定,改变过程参数对其影响并不很大,因此成型原料的选择极为重要。表1是用于气辅注射成型的常用塑料。PA(聚酰胺)和PBT(聚对苯二甲酸丁二酸酯)具有独特的结晶稳定性,尤其适合用于气辅注射成型;PA6,PA66和PP也经常被用于气辅成型;一些部分结晶型树脂,成型时内部靠近气道一侧由于冷却速率相对较慢,无明显无定型边界层产生.但外侧因为模壁的闪速冷却会产生无定型边界层,从而影响制品质量;对于玻璃纤维增强塑料,在模壁处会产生轻微的分子定向,且在模壁下一定距离处(约距制品外表面1mm处)沿料流方向达到最大成型高强度制件可选用具有较高弹性模量的树脂,实际生产过程中应根据制件使用要求和具体成型条件选择合适的树脂材料。 三、制件中气道的设计气道设计是气辅成型技术中最关键的设计因素之一,它不仅影响制品的刚性同时也影响其加工行为,由于它预先规定了气体的流动状态,所以也会影响到初始注射阶段熔体的流动,合理的气道选择对成型较高质量的制品至关重要。  1、常见气道的几何形状对于带加强筋的大型板件,气辅注射成型时,其基板厚度一般取3一6mm,在气体流动距离较短或尺寸较小的制件中,基板厚度可减至1.5一2.5 mm;加强筋的壁厚可达到与其相接部分壁厚的100%一125%而不会产生凹陷;气道的几何形状相对于浇口应是对称或是单方向的,气体通道必须连续,体积应小于整个制件体积的10%。  2、制件的强度分析成型传统带加强筋的制件经常出现凹陷、翘曲变形等,而图1所示各种断面几何形状加强筋的板件采用气辅注射成型,既保证了制品强度,又克服了传统注射成型的缺点。通常,相同基板厚度条件下,类似图1(e)带有空心宽T型加强筋的比带空心窄T型加强筋的制件强度要高,后者又比相同截面带有类似图1(a)的空心半圆型加强筋板件的强度要高。制件强度随受力大小和其形式不同变化很大,虽然采用加强筋可增大制品刚度,但若对其施加局部集中应力,就会大大削弱制品强度。  3、气道尺寸气道的尺寸设计与填充气体的流动方向密切相关,气体在流道内总是沿着阻力最小的方向流动。稳0定的牛顿流体通过直径为D的圆管,其压降公式为ΔP=32μVL/D ,其中μ为流体粘度,V为平均流速,L为流体段长度,D为管径,因为气体粘度极小,低于树脂的0.1%,而且压降在长度方向上可被忽略,因而只需考虑树脂压降产生的阻力。假塑性流体在圆管中流动的压降公式与牛顿流体形式相似,因此利用上述公式而不必考虑实际流体及气体的状况,比较基于气体近浇点不同方向的压降ΔP(即比较各段的L和D的大小),就可定性地解决气体未充动方向问题ΔP小的方向即为气体的优先流动方向。改变流道尺寸直接导致不同方向压降的变化,从而改变气体的流动方向,并影响制件的成型质量。  四、模具设计由于气辅注射成型采用相对较低的注射压力和锁模力,所以除可采用一般模具钢制作模具外,还可采用锌基合金、锻铝等轻合金材料制造。气辅注射成型过程的模具设计与普通注射成型相似,模具及制件结构设计造成的缺陷并不能通过调整成型过程中的参数来弥补,而是应及时修改模具和制件结构的设计,普通注射成型中所要求的设计原则在气辅注射成型过程中依然适用,以下主要介绍其不同部分设计时应注意事项:  (1)要绝对避免喷射现象虽然现在气辅注射有朝着薄壁制品、生产特殊形状弯管方向发展的趋势,但传统的气辅注射仍多用来生产型腔体积比较大的制件,料流通过浇口时受到很高的剪应力,容易产生喷射和蠕动等熔体破裂现象。设计时可适当加大进浇口尺寸、在制品较薄处设置浇口等方法来改善这种情况。 (2)型腔设计由于气辅注射中欠料注射量、气体注射压力、时间等参数很难控制一致,因此气辅注射时一般要求一模一腔,尤其制品质量要求高时更应如此。实际生产中有过一模四腔的例子,采用多型腔设计时,要求采用平衡式的浇注系统布置形式。  (3)浇口设计一般情况只使用一个浇口,其位置的设置要保证欠料注射部分的熔体均匀充满型腔并避免产生喷射。若气针安装在注射机喷嘴和浇注系统中,浇口尺寸必须足够大,防止气体注入前熔体在此处凝结。气辅注射中最为常见的一个问题是气体穿透预定的气道进入制件薄壁部分,在表面形成类似指状或叶状的气体流纹(Gas fingering),甚至少数几个这样的“指纹"效应对制品的影响也是致命的,应该极力避免。研究表明,形成这类缺陷的主要原因是由于进浇口尺寸和气体延迟时间设置不当造成的,而且这两种因素常常相互作用,比如当采用较小的浅口和较短的延迟时间时,就极易产生这种不良后果,既影响了制品外观质量又极大地降低了制件强度。一般可采用缩短气道长度,加大进浇口尺寸,合理控制气体压力的方法避免这种不利情况的发生。  (4)流道的几何形状相对于浇口应是对称或单方向的,气体流动方向与熔融树脂流动方向必须相同。  (5)模具中应设计调节流动平衡的溢流空间,以得到理想的空心通道。气辅注射成型技术近些年在家用电器、汽车、家具、办公用品等行业广泛应用,并且朝着提高制品尺寸稳定性、制造表面性能优良的薄壁制品、生产特殊形状管材、取代汽车工业中金属制件等方向发展,相信在以后的工业生产中气辅注射技术仍将发挥其重要作用。
驼驮网整理
2020-09-25
为什么齿轮不能少于17个齿数,少了会怎样?
为什么齿轮不能少于17个齿数,少了会怎样?
齿轮是生活中应用比较广泛的一种零配件,不管是航空、货轮、汽车等等都会使用。不过齿轮在设计加工的时候它的齿轮数量是有要求的,有人说如果低于了17齿就不能转了,有人反驳说不对,低于17齿以下的齿轮比比皆是,大家的说法都正确,知道这是为什么吗?那为什么是17?而不是其他数哪?至于17,这个要从齿轮的加工方法说起,如下图,一种广泛使用的方法是用一个滚刀去切。这样制造齿轮时,当齿数较少时,会发生根切现象,这会影响制造出来的齿轮的强度。什么是根切,就是根被切了。注意图中红框部分:齿轮的齿顶与啮合线的交点超过被切齿轮的极限啮合点时,被切齿轮齿根的渐开线齿廓被切去一部分,这种现象叫根切。那么什么情况下可以避免根切呢?答案就是这个17(齿顶高系数1,压力角20度时)。首先,齿轮能够转动就是因为上齿轮和下齿轮之间要形成一对良好的传动关系,只有两者之间的衔接到位了,所以它的运行才能是一个平稳的关系。拿渐开齿轮来说,两个齿轮之间啮合好才能发挥它的作用,具体又分成了直齿圆柱齿轮和斜齿的圆柱齿轮这两种。标准的直齿轮它的齿顶高的系数是一,齿跟高的系数是1.25,而它的压力角的度数要达到20度,齿轮加工时如果齿胚和刀具之间就像是两个齿轮一样。如果胚的齿数小于一个特定值的时候齿根的根部就会被挖去一部分,就叫做根切,如果根切小了之后就会影响到齿轮的强度和平稳性。这里所说的17个是针对齿轮来说的,如果不谈齿轮的工作效率的话不管多少个齿它都会工作,也能运行。此外,17它是一个质数,也就是说齿轮的某个齿和其他的齿轮的某个重合次数在一定圈数下最少,受力时就不会长期在这一个点上。齿轮属于精密仪器,虽然在每个齿轮上都会产生误差,但是17这个产生轮轴磨损的几率实在是太大了,所以如果是17的话,短期动一会还行,长期的话就不能了。但是,问题来了!市面上还有很多小于小于17个齿的齿轮,照样转的好好的,有图有真相!有网友指出,事实上,如果换一种加工方法,制造齿数小于17的标准渐开线齿轮是可以的。当然,这样的齿轮用起来也是很容易卡住的(由于齿轮干涉,找不到图,请脑补),这样也就真的转不动了 。对应的解决方法也很多,变位齿轮是最常用的一种(通俗的说就是切的时候把刀具挪开一点),另外也可以有斜齿轮,摆线齿轮等等。还有就是泛摆线齿轮。另一位网友观点:大家似乎还是太过相信书了,不知道有多少人在工作中对齿轮彻彻底底研究过的,机械原理一课中对于渐开线直齿齿轮齿数大于17不产生根切的推导是基于加工齿轮的齿条刀具的前刀面顶部圆角R为0,而实际上工业生产中的刀具怎么会没有R角呢?(没有R角刀具热处理是尖锐部分应力集中容易崩裂,使用过程中容易磨损或者崩裂)而且就算是刀具没有R角根切发生的最大齿数也未必是17齿,所以17齿作为根切条件的说法其实是有待商榷的!上几幅图大家看看吧。从图中可以看出当用前刀面顶部R角为0的刀具加工齿轮时从15齿到18齿的齿根过渡曲线并没有什么明显变化,那为什么说17齿是渐开线直齿开始发生根切的齿数呢?这张图想必机械工程专业的同学应该都用齿轮范成仪画过,可以看出刀具R角大小对齿轮根切的影响。上图中的齿根部分的紫色延伸外摆线的等距曲线就是齿根根切后的齿廓线,一个齿轮的齿根部分根切到什么地步就会影响使用呢?这是由另外一个齿轮齿顶的相对运动和齿轮齿根的强度储备共同决定的,如果配对齿轮的齿顶不会和根切部分啮合那这两个齿轮就可以正常旋转,(注:根切部分是非渐开线齿廓,一个渐开线齿廓和一个非渐开线齿廓啮合在非特异设计的场合通常是无法共轭的,也就是要干涉的)。从这张图上可以看出这两个齿轮的啮合线刚刚擦着两齿轮的过渡曲线所对的最大直径圆(注:紫色部分为渐开线齿廓,黄色部分为根切部分,啮合线是不可能进入基圆以下的,因为基圆以下是不可能有渐开线的,两齿轮在任意位置的啮合点皆在这条线上),也就是这两齿轮刚刚可以正常啮合,当然这在工程上是不允许的,啮合线长度为142.2,此值/基节=重合度。还有人说:首先这个题设错误,齿轮小于17个齿不会影响使用(答案第一中这一点的描述出现错误,齿轮正确啮合的三个条件中与齿数无关),但是17个齿在某些特定情况下会出现加工不便的情况,这里更多的是补充一些关于齿轮的相关知识。先说渐开线,渐开线是使用最广泛的齿轮齿廓的类型。那么为什么是渐开线?这个线跟直线、圆弧有什么区别?如下图所示为一渐开线(这里只有半个齿的渐开线)。渐开线用一句话说就是假定一直线和其上一不动点,在该直线沿一个圆滚动时,那个不动点所走过的轨迹。它的好处显而易见,当两个渐开线互相啮合时,如下图。两轮转动时 ,在接触点 (如 M , M’ )上力的作用方向恒在同一直线上上 ,而且这根直线与两个渐开线形的接触面 (切面)保持垂直 ,由于垂直,它们之间不会产生“打滑”和“摩擦”,这也就客观上减小了齿轮啮合的摩擦力,不仅能提高效率,还能延长齿轮的寿命。当然,作为应用最多的一种齿廓形式——渐开线,并不是我们唯一的选择。再说“根切”,作为工程师,我们不仅仅要考虑理论层面可不可行,效果好不好,更为关键的在于要想办法让理论上的东西呈现出来,这涉及到选材、制造、精度、检测等等环节。齿轮常用的加工方式一般分为成形法和范成法,成形法也就是通过制造与齿之间的间隙形状相对应的刀具,直接切出齿形,这个一般有铣刀、蝶形砂轮等;范成法比较复杂,大家可以理解为两个齿轮在啮合,其中一个齿轮很硬(刀具),另一个则还处于毛胚状态,啮合的的过程是由离得很远逐渐运动到正常啮合状态,在这个过程中切削产生新齿轮,有兴趣的可以找《机械原理》具体学习。范成法的使用很广泛,但是当齿轮齿数较少时,就会出现刀具的齿顶线与啮合线的交点,超过被切齿轮的啮合极限点的情况,这时待加工齿轮的根部就会被过切除,由于被根切的部分超过了啮合极限点,它并不影响齿轮的正常啮合,但这样的坏处在于它削弱了轮齿的强度,这样的齿轮用在变速箱等重载场合时,就容易出现轮齿折断的情况,如图为2模8齿齿轮正常加工后的模型(有根切)。而17是在我国齿轮标准的情况下计算出的极限齿数,齿数小于17的齿轮在使用范成法正常加工时就会出现“根切现象”,这时便要调整加工方法,如变位,如图为变位加工的2模8齿齿轮(小根切)。当然这里描述的内容很多内容是不全面的,机械中还有很多更有意思的零件,在工程中制造这些零件面临的问题也更多,有兴趣的金粉不妨多关注关注。结论:17个齿来自于加工方式,也取决于加工方式,如果更换或者改进齿轮的加工方式如成形法、变位加工(这里特指直齿圆柱齿轮),就不会出现根切现象,也就没有17个齿的极限数量问题。另外从这个问题及其答案可以看出机械学科的一个特点——理论与实践高度结合。机械液压论坛观点:首先,齿轮少于17个齿就不能转的说法是不正确的,下面我们简单介绍一下17个齿这个数字是怎么来的。齿轮是指轮缘上有齿轮连续啮合传递运动和动力的机械元件,齿轮齿廓有渐开线形,圆弧形等,渐开线形齿轮应用比较广泛。渐开线齿轮又分直齿圆柱齿轮/斜齿圆柱齿轮等,对于标准的直齿圆柱齿轮,齿顶高系数为1,齿根高系数为1.25,压力角为20°。齿轮加工时一般采用范成法加工,即加工时刀具与齿坯的运动就像一对互相啮合的齿轮。对于标准齿轮加工,如果齿数小于某一特定值,在齿坯的根部的渐开线轮廓就会被挖去一部分,这就叫根切,如下左图,根切会严重影响齿轮的强度和传动的平稳性,这个不发生根切的最小值是 2*1/sin(20)^2(1就是齿顶高系数,20就是压力角 )。这里的17个齿是针对标准直齿圆柱齿轮而言的,我们有很多办法来,避免发生根切,比如齿轮变位,即将刀具远离或靠近轮坯回转中心,这里为了避免发生根切需要选择远离轮廓回转中心,如下右图,是不是完整的渐开线轮廓线又出来了。齿轮变位之后,齿轮就又可以不受影响的转起来了,上面通过适当的变位,5个齿的齿轮也可以转了。其实斜齿轮也可以避免避免齿轮根切,或者降低发生根切的最小齿数值。17这个数字是计算出来的。并不是说少许17个齿轮就转不起来,而是如果少于17个齿,容易在齿轮加工时将齿轮根部以加工出的间开线部分切去一部分,即根切,造成齿轮强度减弱。至于怎么计算的,完全是数学问题,参照上面的公式,捏合角a=20度是,最小不发生根切的最小齿数是17个。网友观点:齿轮的齿数能不能少于17是一个值得考虑的问题。对于标准齿轮来说,齿数还真不能少于17,为什么呢。因为当齿数少于17时,齿轮会发生根切现象。所谓根切是指用范成法切齿时,在一定的条件下,刀具的齿顶过多地切入轮齿的根部,而将齿根的渐开线齿廓切去一部分。范成法范成法(或称展成法)是运用几何学上的包络原理加工齿轮的一种方法。在给定了两齿轮的渐开线齿廓和主动轮角速度w1后,通过两齿廓的啮合就可获得从动轮的角速度w2,且使i12=w1/w2=定值。因为两齿廓啮合中,两节圆作纯滚动,节圆1在节圆2上纯滚的过程中,齿轮1的齿廓对于齿轮2将占据一系列相对位置,而这一系列相对位置的包络线就是齿轮2的齿廓,也即在两节圆作纯滚动时,两渐开线齿廓可看作互为包络线。根切现象产生根切的原因:当刀具齿顶线与啮合线的交点超过啮合极限点N1,刀具由位置Ⅱ继续移动时,便将根部已切制出的渐开线齿廓再切去一部分。根切的后果:产生严重根切的齿轮,一方面削弱了轮齿的抗弯强度;另一方面将使齿轮传动的合度有所降低,这对传动是十分不利的。产生根切的原因:当刀具齿顶线与啮合线的交点超过啮合极限点N1,刀具由位置Ⅱ继续移动时,便将根部已切制出的渐开线齿廓再切去一部分。对于非标准齿轮,齿数少于17是可以的。来源:知乎
驼驮网整理
2020-09-22
如何安全操作注塑机?这些操作准则需牢记!
如何安全操作注塑机?这些操作准则需牢记!
注塑机是属一种高压、快速动作,同时在高温环境中运作的一种机器,往往会使操作者一时疏忽,在大意之下造成无法弥补的人身伤害,而遗憾终身。注塑机在每一部操作中都带有危险性,特别是当开模及锁模时。为避免危险发生,操作者在操作时必须注意以下几个安全操作方面的问题:1、保持注塑机及其四周环境清洁。2、注塑机四周空间尽量保持畅通无阻,加过润滑油或压力油后,应尽快把漏出的油抹去。3、把熔胶筒上的杂物(例如胶粒)清理干净后才可开启电热,以免发生火灾。如非检修机器或必要是,不得随意拆掉熔胶筒上之隔热防护罩。4、检查在操作时,按下紧急按钮或者打开安全门是否能终止锁模。5、射台前移时,不可用手清除从射嘴漏出的熔胶,以免把手夹在射台和模具中间。6、清理料筒时,应把射嘴温度调到最适当的较高温度,使射嘴保持畅通,然后使用较低的射胶压力和速度清除筒内余下的胶料,清理时不可用手直接接触刚射出的胶料,以免被烫伤。7、避免把热敏性及腐蚀性塑料留在料筒内太久,应遵守塑料供应商所提供的停机及清机方法。更换塑料时要确保新旧塑料的混合不会产生化学反应(例如POM和PVC先后混合加热会产生毒气),否则须用其它塑料清除料筒内的旧料。8、操作注塑机之前须检查模具是否稳固地安装在注塑机的动模板及头板上。9、注意注塑机的地线及其它接线是否接驳稳妥。10、不要为了提高生产速度而取消安全门或安全门开关。11、安装模具时必须将吊环完全旋入模具吊孔才可起吊。模具装好后应根据模具的大小调整注塑机安全杆的长度,做到安全门打开时,机器安全挡块(机械锁)落下能够阻挡注塑机锁模。12、在正常的注塑生产过程中,严禁操作者不打开安全门,由注塑机的上方或下方取出注塑件。检修模具或暂不生产时应及时关掉注塑机的油泵马达。13、操作注塑机时,能够一人操作的,不允许多人操作。禁止一人操作控制面板的同时,另一人调整模具或作其它操作。以上就是在操作注塑机时需要特别注意的问题,希望大家能够引以为鉴,在保障安全的条件下进行作业。
驼驮网
2020-09-21
机加工中,工件的常规加工方式及技术要求有哪些?
机加工中,工件的常规加工方式及技术要求有哪些?
机加工是机械加工的简称,是指通过机械精确加工去除材料的加工工艺。机加工主要工作是通过机床实现对原材料的精细化加工。机加工根据加工方式的不同分为手动加工和数控加工。机加工中工件的种类有很多,加工方法也有很多,不同种类的工件有不同的加工方法和技术要求,下面驼驮小编和大家聊聊都有哪些要求?一、切削件加工时要求1.零件应按加工工序进行检查、验收,在前道工序检查合格后,方可转入下道工序。2.加工后的零件不允许有毛刺。3.精加工后的零件摆放时不得直接放在地面上,应采取必要的支撑、保护措施。加工面不允许有锈蛀和影响性能、寿命或外观的磕碰、划伤等缺陷。4.滚压精加工的表面,滚压后不得有脱皮现象。5.最终工序热处理后的零件,表面不应有氧化皮。经过精加工的配合面、齿面不应有退火6.加工的螺纹表面不允许有黑皮、磕碰、乱扣和毛刺等缺陷。二、锻件件加工时要求1.锻件的水口、冒口应有足够的切除量,用以保证锻件无缩孔和严重的偏折。2.锻件应在有足够能力的锻压机上锻造成形,以保证锻件内部充分锻透。3.锻件不允许有肉眼可见的裂纹、折叠和其他影响使用的外观缺陷。局部缺陷可以清除,但清理深度不得超过加工余量的75%,锻件非加工表面上的缺陷应清理干净并圆滑过渡。4.锻件不允许存在白点、内部裂纹和残余缩孔。三、焊件件加工时要求1.焊接前必须将缺陷彻底清除,坡口面应修的平整圆滑,不得有尖角存在。2.焊接件缺陷区域可采用铲挖、磨削,炭弧气刨、气割或机械加工等方法清除。3.焊接区及坡口周围20mm以内的粘砂、油、水、锈等脏物必须彻底清理。4.在焊接的全过程中,预热区的温度不得低于350°C。5.在条件允许的情况下,尽可能在水平位置施焊。6.补焊时,焊条不应做过大的横向摆动。7.表面堆焊接时,焊道间的重叠量不得小于焊道宽度的1/3。焊肉饱满,焊接面无烧伤,裂纹和明显的结瘤。8.焊缝外观美观,无咬肉、加渣、气孔、裂纹、飞溅等缺陷;焊波均匀。四、铸件件加工时要求1.铸件表面上不允许有冷隔、裂纹、缩孔和穿透性缺陷及严重的残缺类缺陷(如欠铸、机械损伤等)。2.铸件应清理干净,不得有毛刺、飞边,非加工表明上的浇冒口应清理与铸件表面齐平。3.铸件非加工表面上的铸字和标志应清晰可辨,位置和字体应符合图样要求。4.铸件非加工表面的粗糙度,砂型铸造R,不大于50μm。5.铸件应清除浇冒口、飞刺等。非加工表面上的浇冒口残留量要铲平、磨光,达到表面质量要求。6.铸件上的型砂、芯砂和芯骨应清除干净。7.铸件有倾斜的部位、其尺寸公差带应沿倾斜面对称配置。8.铸件上的型砂、芯砂、芯骨、多肉、粘沙等应铲磨平整,清理干净。9.对错型、凸台铸偏等应予以修正,达到圆滑过渡,保证外观质量。10.铸件非加工表面的皱褶,深度小于2mm,间距应大于100mm。11.机器产品铸件的非加工表面均需喷丸处理或滚筒处理,达到清洁度Sa21/2级的要求。12.铸件必须进行水韧处理。13.铸件表面应平整,浇口、毛刺、粘砂等应清除干净。14.铸件不允许存在有损于使用的冷隔、裂纹、孔洞等铸造缺陷。以上就是关于不同种类机加工过程中的一些要求,希望可以帮助到大家。
驼驮网
2020-09-04
纯干货篇|注塑机开模力不足的原因及解决办法
纯干货篇|注塑机开模力不足的原因及解决办法
1、开模油压环面积偏小 开模力=开模油压环面积×开模油压力 在最高压力确定条件下还想加大开模力,只能通过加大开模油压环面积,可以通过加大油缸直径或减小活塞杆直径从而提高开模油压环面积。 2、开模过油间隙太小 在开模一段,由于液压缓冲套与油缸前盖内孔的配合间隙太小,导致压力油缓慢甚至难以进入油缸开模腔,所以无法提供最大开模力。加大液压缓冲套与油缸前盖内孔的配合间隙,使压力油能迅速进入油缸开模腔并形成具有一定冲量的开模力,可能开模会出现一定的冲击。 3、高压锁模后θ角超过90°导致反铰 机铰参数的设计及锁模油缸行程及安装位置决定了最后高压锁模时小铰的终止位置并形成一个θ角,设计的θ角必须确保在各零件加工累计公差范围内安装出来的机器其θ角要绝对小于90°。一旦θ角超过90°,小铰出现反铰,这时开模瞬间实际是将钩铰和长铰往直线方向靠使其产生更大的锁模力,最终因此开模力小不足以克服加大锁模力所产生的变形力,所以其开模瞬间无法完成。4、开模力无法克服过大的变形力  当机铰机的机铰设计好后,其产生要达到的既定锁模力时的机铰放大比也已经确定,据此可以设计所需锁模油缸的推力来确定锁模油缸的直径,此油缸还要保证有足够的开模力,要足够的开模力就希望油缸直径越大越好。但油缸直径太大导致锁模时的油缸推力太大而使锁模力超载(调模不好时),机铰变形力过大,开模力无法克服过大的变形力而导致无法开模。在此情况,通常可以通过限制高压锁模压力及流量来防止锁模力超载,调模时耐心一点,尽可能用较低的锁模压力调出合用的锁模力。 5、开模压力低流量小,导致开模冲量小 因开模压力低,流量小导致开模冲量小,无法克服机铰的变形力,特别是伺服控制系统所提供的第一段开模的流量小,开模冲量更小,更难开模。此问题可通过修改控制器的PID和开模斜率来加大开模冲量。 6、装模试压后的升温,导致开模困难 装模试压一段时间后,模具升温膨胀,锁模力增大,导致开模困难。注意及时调整容模量,使锁模力回到原来的值,避免开模故障。 7、装锁模后停机时间过长,导致无法开模 锁模后停机时间过长,导致机铰润滑油膜完全消失,机铰变形进一步加大,导致无法开模。所以尽可能减少锁模停机时间,停机前切记将模具打开,切勿在锁紧模具的情况下停机。 8、开模背压,导致开模冲量的不足  油路上在开模一段设置开模背压也导致开模冲量的不足,如发现此情况就取消开模背压。 9、机铰内的摩擦阻力过大,导致开模阻力  机铰内大销轴和钢套的摩擦阻力过大导致需要更大的开模力来克服其摩擦阻力:(1)钢套内的油槽边缘没有去毛刺导致毛刺磨损成颗粒进入大销轴和钢套的配合面,并使配合面磨损或烧死配合面。为了避免此问题,要求加工这些零件后一定要去修毛刺并修光滑,安装时再次检查并将各表面清理干净涂上润滑脂后安装。(2)如果出现润滑不足或润滑失败也会导致摩擦阻力过大,此时可检查各润滑油路是否正常,润滑泵是否正常。更多精彩内容推荐阅读:>>注塑模具的排气标准有哪些?>>这些注塑模具故障,可以这么排除……>>15个注塑模具使用保养建议拿去,不要再苦恼模具问题
网络
2020-09-04
恭喜您,询价成功!
我们会尽快联系您!
关闭